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SUMMARY

A two-dimensional transient finite element model capable of simulating problems related to two-layer
polymer flows has been developed. This technique represents an effective tool which can be used to study
the possibility of the onset of interfacial instability in coextrusion flows, considering melt rheology as well
as the fluid–geometry interaction. A code has been developed to solve the transient problem of the flow
of bi-component systems of Newtonian and generalized Newtonian fluids through parallel plates and
complex geometries, such as: 2:1 abrupt expansion, 2:1 (30°) expansion, 4:1 abrupt contraction and 4:1
tapered (30°) contraction. Solutions are compared with experimental data from the literature and results
provided by linear stability analysis (LSA) for the case of parallel plate flows. Numerical results are in
agreement with LSA results for the parallel plate geometry cases studied. The expansion geometries tend
to stabilize flows in the parallel plate section downstream of the expansion. Contractions may give rise
to break-up of the interface depending on the flow conditions. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Coextrusion is the simultaneous extrusion from a single die of two or more homogeneous melts
which form a lamellar structure. Resins are in separate extruders and a single extruder can
supply more than one layer of the same resin. In recent years, coextrusion has gained
importance because it is an economical and effective method to obtain plastic products that
meet specific market requirements.

Two types of problems exist in the coextrusion process: interfacial flow instability and
non-uniform layer-thickness distribution. Non-uniform layer distribution refers to the change
in thickness of the distribution of the layers across the width of the sheet [1]. Interfacial flow
instability manifests itself in three different forms: zig-zag, scattering and wave instabilities
[2–6].

The wave instability is seen as a train of parabolas following the flow direction spanning the
width of the extruded sheet [2]; currently, the reasons for its onset are poorly understood.
Recent experimental work [2] suggests that the geometry of the die plays a key role in the onset
of this instability.
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Wilson and Khomami [7–10] examined interfacial instabilities in two-layer coextrusion flows
by introducing temporally regular disturbances with a controllable amplitude and frequency in
the transfer line of one of the extruders. The perturbation was of the form of a pressure pulse
(P=A sin vt) with the amplitude, A, between 0.5 and 5% of the average channel pressure
(400–500 psi), and v identical to the screw rotation frequency, with a typical value of 20 Hz.
If the interfacial wave had a negative growth rate, the flow was considered to be stable. A
positive growth rate would indicate the presence of an unstable flow. Typical values of the
growth rate varied between 0.001 cm(amplitude)/cm(die length) and 0.005 cm/cm.

A recent study by Hyun and Spalding [11] indicates that fluctuations in pressure at the
discharge of an extruder can cause instantaneous changes in the die output rate, generating
fluctuations in the dimensions of the product (transient behaviour). However, the study shows
that periodic oscillations caused by screw rotation are not related to the lower frequency flow
surging. Unsteady state behaviour, such as inconsistent solids conveying and solid bed
break-up [12], can impose low frequency disturbances onto the higher frequency screw rotation
perturbation.

A number of authors have analyzed the problem of interfacial instability by using linear
stability analysis (LSA) to determine which flow rate and viscosity ratio values characterize
stable or unstable flows. LSA provides valuable information in the form of stability diagrams
for specific types of coextrusion flows in which stable and unstable zones are identified. To
study the instability of an interface, LSA considers two-dimensional infinitesimal disturbances
of the steady state solution of the velocity, pressure, and extra stress tensor. The analysis
assumes that all perturbation quantities have an exponential time and periodic spatial
dependence of the form

q(x, y, u)= q̄(y) eia(x−cu), (1)

where q represents an arbitrary perturbation variable, q(y) is the amplitude of the disturbance,
a is a real positive number inversely proportional to the wavelength, x is the flow direction, u

is the dimensionless time, and c is a complex number. Stability is governed by the sign of the
imaginary part of c : if it is positive, the amplitude of the disturbance increases with time and
the flow is unstable; if it is negative, the flow is stable. The governing equations are linearized
with respect to perturbation quantities and the resulting eigenvalue problem solved with the
complex wave speed c as the eigenvalue for which the neutral stability lines are determined.

Table I summarizes relevant papers using linear stability analysis. The major limitation of
the linear stability methodology is that only relatively simple geometries can be modelled.
Complex geometries, such as those in industrial coextrusion dies, are not amenable to standard
linear stability analysis techniques. This limitation can be overcome with the use of numerical
methods which allow the study of die design, processing conditions and rheology in coextru-
sion. The nature of stratified flow makes coextrusion simulation a non-linear problem. The
interface (internal free surface) location is not known a priori and must be included in the
calculation. Additional sources of non-linearity derive from the non-linear properties of the
polymer melts and the complexity of the die geometries.

Computer simulation of two-layer flat steady state coextrusion has been carried out in 2D
[26,27] and 3D geometries [28]. The problem of the discontinuity of pressure and material
properties across the interface has been tackled using finite elements following two approaches:
approximate the pressure in a continuous form in each of the two components and introduce
double nodes at the interface [26,27,29] or approximate the pressure in a discontinuous form
[30,31]. The finite element simulation of the flow of stratified fluids in steady state for complex
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geometries has been the subject of a number of works [30–33]. The geometries studied have
included 4:1 abrupt and tapered expansions and contractions.

The literature reports many studies dealing with unsteady free surface flow problems
involving a liquid–air interface. Their main features have been the time dependency of the flow
domain and the representation of the free surface and its boundary conditions. A mixed
Eulerian–Lagrangian formulation [34] interpolates the unknown flow field by finite element
basis functions on a continuously deforming grid. The displacement of the free surface is
unknown a priori and is determined with the unknown fields and, at each time step, the grid
is deformed to follow the movement of the free surface [35–39].

Anturkar [40] used a streamlined transient Galerkin finite element formulation to solve the
problem of a bi-component flow system of Newtonian and viscoelastic fluids respectively,
between parallel plates. A wavy pattern was obtained for the interfacial shape but with no
visible growth or decay in amplitude.

In this work, a study of the interfacial stability of different bi-component Newtonian and
generalized Newtonian flow systems is presented. The results are compared with experimental
evidence concerning the existence of low frequency disturbances entering the die from the
extruder and its effect on the final coextrudate. A transient finite element code has been devised
to solve a variety of bi-component flow systems in which one of the inlet volumetric flow rates
is periodically perturbed in time. By analyzing the transient response of the interface between
the two fluids to the external perturbation, the stability of the flow systems is investigated.

In terms of the nature of the problems solved, the work can be divided into three parts: the
bi-component flow problem for the case of a straight channel with a comparison of results
against LSA theory; bi-component flows through complex geometries; and calculations for the
case presented in the experimental work of Wilson and Khomami [7,10] on the stability of high
density polyethylene (HDPE)/ polypropylene (PP) coextrusion flow systems through a flat die
[7].

Table I. Linear stability analysis, results applicable to the coextrusion problem

GeometryFluid Parameters studiedAuthors

Yih [13] Newtonian Plane Couette Viscosity ratio
Plane Poiseuille

Viscosity ratioPlane CouetteNewtonianHickox [14]
Li [15] Oldroyd fluid Plane Couette Viscosity ratio
Khan and Han [16] Colleman-Noll Rectangular duct Viscosity ratio

second order fluid
Plane Couette Elasticity, viscosity and densityUpper convectedChen [17]

ratiosMaxwell fluid
Hooper and Boyd Surface tension, density ratioNewtonian Unbounded Couette

[18]
Joseph, Renardy Viscosity ratioNewtonian Poiseuille core-annular

and Renardy [19] flow in tube
Power lawWaters [20] Shear thinning viscosity (powerPlane Couette

law parameters)
Plane PoiseuillePower lawKhomami [21,22] Shear thinning viscosity (power

law parameters)
Su and Khomami Oldroyd-B Elasticity, viscosity and densityPlane Poiseuille

ratios[23–25]
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2. GOVERNING EQUATIONS

The flow of molten polymers inside the die has been modelled assuming creeping, isothermal
and incompressible flow with no body forces.

The governing equations expressing conservation of momentum and mass are

r
DV
Dt

=9 · t−9P, (2)

9 · V=0. (3)

The material derivative of the velocity in Equation (2) is

r
DV
Dt

=r
(V
(t

+rV · 9V. (4)

Nodes move depending on the movement of the interface along a fixed line in space (spine).
This corresponds to a mixed Eulerian–Lagrangian formulation. However, the time derivative
of Equation (4) is a Eulerian time derivative, i.e. the nodal velocity field is defined for nodes
fixed in space. Therefore, the time derivative ((/(t) is transformed to a time derivative which
follows the moving nodes along the spines (d/dt).

The relationship between d/dt and (/(t is

d

dt
=
(

(t
+
(X
(t

· 9=
(

(t
+

dh
dt
(X
(h

· 9, (5)

where X=X(h, j, h) is the vector of co-ordinates of a moving nodal point and h is the
interface position. The term (V/(t (obtained when the velocity vector V is substituted into
Equation (5) is substituted into the momentum equation (4), and the resulting equation is

r
�dV

dt
−

dh
dt
(X
(h

· 9V+V · 9V
�

=9 · t−9P. (6)

The flows considered are two-dimensional, with the velocity expressed as V=ui+6j. t is the
extra stress tensor and P is the pressure. A generalized Newtonian constitutive equation [41] is
used to model the stress–strain relation:

tij=h
�(Vi

(Xj

+
(Vj

(Xi

�
. (7)

The viscosity dependence on shear rate can be modelled either as Newtonian (h=constant)
or fit to a Carreau model, which is of the form

h(g; )= (h0−h�)[1+ (lg; )a](n−1)/a, (8)

where h0, h�, l, a and n are material properties, and

g; ='1
2

IIg. (9)

Figure 1 shows a schematic of the different geometrical domains included in this work: a
straight channel, an abrupt and a tapered (30°) 2:1 expansion, and an abrupt and a tapered
(30°) 4:1 contraction. Figure 1(a), containing reference labels, will be referred to below to
specify the boundary conditions. Similar boundary conditions are applied to the rest of the
different domains in Figure 1(b–e).
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Figure 1. Schematic of different geometrical domains.

The boundary conditions assume fully developed flow at the die inlet for each of the two
channels. A sinusoidal perturbation in time (t) of the fully developed velocity profile of fluid
1 entering feed channel 1 (lines HA in Figure 1(a)) is imposed. The fully developed velocity
profile of fluid 2 entering channel 2 (line EF in Figure 1(a)) remains constant in time:

On HA (n · V)1= f1(x, y, t), (10)

On EF (n · V)2= f2(x, y). (11)

The no-slip boundary condition is applied at solid boundaries (see Figure 1):

On AB, DE, FGH, V=0. (12)

At the interface GC, interfacial tension is neglected since viscous forces are extremely high
compared with interfacial tension [1], and the boundary conditions are expressed as

– Equilibrium of forces:

n · s1=n · s2, t · s1= t · s2, sk= −Pk · I+tk, k=1, 2, (13)

– Continuity of tangential velocities and vanishing velocity normal to the interface:

t ·
�

V−
(X
(t
�

1

= t ·
�

V−
(X
(t
�

2

. (14)

At the exit, line BCD, zero traction and zero cross flows (6=0) are imposed at each time
step. However, the interface is allowed to move at the exit plane (dh/dt"0) in order to satisfy
continuity.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1159–1181 (1998)
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3. FINITE ELEMENT METHOD

The type of elements used in this work are quadrilateral nine-node quadratic Lagrangian
elements for the velocity field V and quadrilateral four-node bilinear elements for the pressure
field P. Velocity, nodal co-ordinates and pressure are interpolated within an element by

Vi
(e)(t)=%

i

Ni(j, h)Vi, (15)

Xi
(e)(t)=%

i

Ni(j, h)Vi, (16)

P (e)(t)=%
i

NP
i (j, h)Pi. (17)

The dependence of the nodal locations X(h)i on the position of the interface is given by
Equation (16).

The interface is described using the spine technique of Kistler and Scriven [37]. A spine is a
line that is defined by the location of a static base point xB

k , a static top point xT
k and its

inclination ek, as in Figure 2 for the linear case. The interface is defined by its distance from
the base points xi

k.
Elements are deformed corresponding to the deformation of the interface, by positioning the

nodes at fixed proportions, wi, along a spine aligned in the gap direction so that they move in
proportion to the interface. The location of the node i(k, j ) on the kth spine is:

For nodes located under or at the interface:

xi=xB
k +w jhk(xT

k −xB
k). (18)

For nodes above the interface:

xi=xB
k + (xT

k −xB
k)(hk+w j(1−hk)). (19)

In Equations (18) and (19), the dimensionless interface position hk is given by

hk=
xi

k−xB
k

xT
k −xB

k . (20)

At the element level, the interface is described by the finite element representation:

xi= %
ni

j=1

xi
jN j (j, h=1), (21)

where ni is the number of nodes on the interface.

Figure 2. Moving node position definition.
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The dynamic simulation uses a steady state solution of Equations (2), (3), (7) or (8), and
(10)–(14) as the initial state corresponding to time step 0. A sinusoidal perturbation is imposed
on the fully developed velocity profile at the entrance of the feeding channel corresponding to
fluid 1 (lower fluid) and the evolution in time of the interface observed.

In order to determine the stability of a given flow system, the different transient vertical
positions of interfacial points at fixed locations along the die length are collected, and their
cyclic behaviour monitored. If the maximum amplitude of the resulting wave decreases in the
flow direction, the flow is said to be stable. In the contrary case, it would be considered
unstable [7].

The time dependent inlet velocity profile is of the form

V1(x, y, t)=V1(x, y)+A sin(vt), (22)

where A is the amplitude of the perturbation and v is its frequency in rad s−1.
An independent variable used in the numerical experiments is the dimensionless wavenumber

a, defined as

a=
vd

Vint f

, (23)

where d is the steady state thickness of the more viscous layer (lower layer) and Vint f is the
steady state velocity of the interface at the exit of the die.

A Galerkin method is used to reduce the governing differential equations (Equations (2) and
(3)) and the kinematic boundary condition (14) to a first-order system of differential equations,
written as

[C ]{U: }+ [K ]{U}={F}, {U(t0)}={U0}, (24)

where [C ] is the damping matrix, [K ] the stiffness matrix, {F} the load vector and {U(t)} the
vector of unknowns [42]:

U={VT, PT, hT}, (25)

for a given time step.
Equation (24) can be written as

{U: }= [C−1]{{F}− [K ]{U}} for t\ t0, {U}={U0} for t= t0. (26)

The implicit Euler method [42] is used for the transient simulation together with a
Newton–Raphson procedure to solve the non-linear problem (24).

In the Euler method, Equation (26) is written at time t+oDt, with 05o51 and the time
derivatives are approximated by a forward finite difference approximation:

{U: t+oDt}$
1
Dt

({Ut+Dt}−{Ut}). (27)

The following recurrence formula is obtained:

{Ut+Dt}={Ut}+Dt{f(Ut+oDt, t+oDt)},

where

{Ut+oDt}=o{Ut+Dt}+ (1−o){Ut}. (28)
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If o=0, the formulation corresponds to an explicit Euler method, if 0BoB1 it corresponds
to the semi-implicit case, and if o=1 it corresponds to the implicit case.

The correction of {−DUi} in {Ut+Dt} for an iteration step i of the Newton–Raphson
method, is given by

{−DUt+Dt
i }={Ut+Dt

i −Ut+Dt
i−1 }, (29)

calculated solving the system of equations�(Rnl

(U
n

t+Dt

i−1

{−DUt+Dt
i }={Rnl}t+Dt

i−1 . (30)

The Jacobian matrix is given by�(Rnl

(U
n

t+Dt

i−1

=oDt
!(F
(U

"
t+Dt

i−1

− [C ]−oDt
�({K(U){U}}

(U
n

t+Dt

i−1

, (31)

and the residual {Rnl}t+Dt
i−1 is

{Rnl}t+Dt
i−1 =Dt(o{Ft+Dt

i−1 }+ (1−o){Ft}− (1−o)[K(Ut)]{Ut}−o [K(Ut+Dt
i−1 )]{Ut+Dt

i−1 })

+ [C ]({Ut}−{Ut+Dt
i−1 }). (32)

The pressure discontinuity at the interface is handled by using the double node technique
[27].

The size of the time step Dt is associated with the duration of a complete cycle of the
imposed sinusoidal perturbation on feeding channel 1. The cycle time (2p/v) is divided by 20
to get the integration time step Dt. Both the time step and the finite element discretization have
been refined to the extent that the solutions are independent of the spatial discretization and
the time interval. The degree of refinement in all finite element meshes is such that a distance
of 1 mm or less has been set between nodes along the die length. The distance between nodes
(and consequently between spines) is considered appropriate to capture the shape of the
deforming interface for the case of the longwave instabilities studied.

The termination criteria in the Newton–Raphson procedure, for each time step, is defined
by

maxi �DUt+Dt
i �510−3, maxi �Rnlt+Dt

i �510−3. (33)

The finite element mesh, for each of the geometries, has been generated using FIDAP™ [43]
and then the nodal locations and interconnectivities are used for the finite element solver.

4. RESULTS

4.1. Straight channel-Newtonian fluids

Fluid 1 (lower) with viscosity h1, average velocity U1, and depth d1, and fluid 2 (upper) with
viscosity h2, average velocity U2, and depth d2 enter the flow domain through their correspond-
ing feeding channels and flow downstream through the planar straight channel. The finite
element mesh used for the simulations is shown in Figure 3. It consists of 424 nine-node
quadrilateral elements. The channel has a length of 10 cm with 50 elements along this direction
and a gap (d=d1+d2) of 2 cm with eight elements in this direction.

Results are compared with LSA results of Khomami [21]. Each flow system is defined in
Khomami’s work by its viscosity ratio b and depth ratio j :

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1159–1181 (1998)
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Figure 3. Finite element mesh. Straight channel die.

b=
��U2

d2

�(n1/n2)−1n�m1

m2

�1/n2

, (34)

j=
h

1−h
where h=

d1

d1+d2

. (35)

In Equation (34) m1 and m2 are the consistency indices and n1 and n2 the power law indices
of fluids 1 and 2 respectively. For the Newtonian case (n1=n2=1, m1=h1, m2=h2), Equation
(34) reduces to b=h1/h2.

Figure 4 depicts the interfacial instability of two Newtonian fluids as a function of the
viscosity ratio (b) and the depth ratio (j) given by Khomami [21]. In Equation (35), h is the
dimensionless interface position (0BhB1) given by Equation (20).

The two Newtonian flow problems selected (see Figure 4) have a viscosity ratio of b=10.
The two different depth ratios (j) are obtained from a variation on the volumetric flow rate
ratio (Qr=Q1/Q2). The values of viscosity are 10 000 and 1000 Pa s respectively for fluids 1
and 2. The values of Qr are 0.125 (unstable flow) and 8 (stable flow) obtained by setting the
inlet average velocity ratio (Vavg1/Vavg2) to the values of 0.125/1 and 1/0.125.

The simulations for the Newtonian case have been performed using a value of v=0.5 Hz
for the sinusoidal perturbation frequency imposed on feeding channel 1. With the perturbation
frequency value and the steady state position and average velocity of the interface, the
dimensionless wavenumber a is computed using Equation (23).

Figure 4. Interfacial stability diagram for two Newtonian fluids (Reference [21]).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1159–1181 (1998)
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Table II. Newtonian flow simulations (geometry shown in Figure 3)

Unstable NewtonianParameter Stable Newtonian

Qr 0.125 8
0.35836 0.86046h

Vint f (cm s−1) 0.2979 0.7806
0.5v (Hz) 0.5

1.2 1.102a

The time step used in the simulations was 0.6283 s, corresponding to 1/20 of a perturbation
cycle time (12.566 s). The transient problem has been solved for five perturbation cycles.

Table II shows the steady state dimensionless interface position h, interface velocity Vint f,
perturbation frequency v, and resulting dimensionless wavenumber a for the two Newtonian
flows simulated. The results for the steady state interface position h have been validated using
the steady state analytical solution as a reference [44].

Figure 5(a) shows the transient behaviour of the interface for the stable Newtonian flow
case. The figure corresponds to the fifth perturbation cycle. Interface shapes resulting from five
different points of the perturbation cycle (vt=0, p/2, p, 3p/2, and 2p) are shown. The initial
steady state flat interface responds to the continuous perturbation and evolves towards the
wavy pattern shown. The numerical solution shows how the amplitude of the interfacial wave
decreases both in time and in the flow direction.

In order to verify that the solution was not mesh dependent or time step dependent, a
second simulation was performed doubling the mesh in both directions and cutting the time
step by half, and the difference between the two solutions was negligible.

Figure 5(b) shows the transient vertical movement of two points of the interface. The first
is located 5 cm from the meeting point of the two fluids (center of the die), and the second one
corresponds to the exit of the die (10 cm from the meeting point of the two fluids). The cyclical
vertical movement of each point tends to stabilize in time. The amplitude of the wave
corresponding to the exit point is lower than described by the upstream point. The stable
transient solution agrees with the LSA result.

Figure 6(a) shows the Newtonian unstable flow transient movement of the interface for the
fifth perturbation cycle. The amplitude of the evolving interfacial wave increases in the flow
direction and is unstable, in agreement with LSA.

Figure 6(b) shows that the amplitude of the vertical movement of the downstream interfacial
point (exit of the die) is larger than that described by the upstream point (center of the die),
thus characterizing the flow as unstable.

4.2. Straight channel-Carreau fluids

This section includes the interfacial instability study of two generalized Newtonian (Carreau
model) flow systems. Two truncated power law fluids included in a linear stability analysis
study by Khomami [21] are fitted using the Carreau model constitutive equation included in
our model. Figure 7 shows the stability diagram for two truncated power law fluids with power
law indices of n1=0.35 and n2=0.75, respectively [21]. The truncated power law model models
a viscosity h=m for g; 5g; 0 and h=m(g; /g; 0)n−1 for g; \g; 0 (g; 0=1). Table III shows the
rheological parameters of both fluids when fitted to the Carreau model given by Equation (8).

Table IV shows the key parameters for the two generalized Newtonian flows studied. The
LSA diagram of Figure 7, given by Khomami [21], shows the location of the two flow
problems in the different regions of stability.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1159–1181 (1998)
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Table V shows the steady state dimensionless interface position h, interface velocity Vint f,
perturbation frequency v, and computed dimensionless wavenumber a for the two Carreau
flow problems solved.

The time step for each simulation has been set to 1/20 of a complete perturbation cycle time,
being 0.07854 s for the stable flow case and 0.7854 s for the unstable one, with five
perturbation cycles accounting for the complete transient runs.

Figure 8(a) shows the developed interfacial wave corresponding to the fifth perturbation
cycle of the stable flow system. It is clearly seen that the wave amplitude decreases in the flow
direction. Figure 8(b) shows the transient vertical movement of the center and exit of the die
interfacial points. The amplitude of the periodic movement of the downstream point is lower
than that of the upstream point, thus characterizing the flow as stable.

Figure 9(a) shows the resulting interface corresponding to the fifth perturbation cycle for the
case of the unstable flow system, where the interfacial wave amplitude increases in the flow

Figure 5. (a) Transient interface position. Stable Newtonian flow. v=0.5 Hz, Dt=0.6283 s, a=1.102. (b) Transient
vertical movement of selected points. Stable Newtonian flow.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1159–1181 (1998)
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Figure 6. (a) Transient interface position. Unstable Newtonian flow. v=0.5 Hz, Dt=0.6283 s, a=1.2. (b) Transient
vertical movement of selected points. Unstable Newtonian flow.

direction (Figure 9(b)). Both simulations agree with the stability prediction of the linear
stability diagram of Figure 7.

4.3. Abrupt 2:1 expansion-Newtonian fluids

Using the LSA theory, stability results for the two parallel plate sections of the flow channel,
before and after the abrupt expansion, are compared with calculated results from the transient
simulation for the entire flow field of the abrupt expansion (Figure 1(b)).

Simulations were carried out for five perturbation cycles. The perturbation frequency is 0.5
Hz. The parallel plate section of the channel before the abrupt expansion has a length of 10
cm and a gap of 2 cm (the same dimensions as the straight channel domain) and the section
after the expansion has a length of 10 cm. The finite element mesh contains 100 elements in the
channel length direction, with 50 elements upstream of the abrupt expansion, and 8 and 16
elements in the channel gap direction upstream and downstream of the abrupt expansion,
respectively.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1159–1181 (1998)
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For the case of Qr=8, b=10, v=0.5 Hz and a=1.102, the steady state dimensionless
interface positions h for the two parallel-plate type of sections of the channel are the same with
a value of 0.8575 and j=6. Both sections of the channel are located in the stable region of the
linear stability diagram of Figure 4.

Figure 10(a) shows the vertical transient movement of four selected points of the interface
in the two parallel plate sections of the channel at 5 (within narrow channel), 10 (abrupt
expansion), 12 (within expanded channel) and 20 cm (exit of the die) from the meeting point
of the two fluids, measured in the flow direction. The figure shows the stable behaviour of the
flow in the parallel plate section upstream of the abrupt expansion, with the upstream point (at
5 cm) always having a periodic movement of larger amplitude than that of the downstream
point (at 10 cm). Stable flow behaviour is also observed in the parallel plate section
downstream of the abrupt expansion.

For the case of Qr=0.125, b=10, v=0.5 Hz, a=1.2 and j=0.55, both sections of the
channel are in the unstable flow regime according to the linear stability diagram of Figure 4.

Figure 10(b) shows the transient vertical movement of the same interfacial points monitored
at 5, 10, 12 and 20 cm along the die after the meeting point of the fluids. The amplitude of the
periodic movement of the point at 10 cm becomes higher than that of the upstream point at
5 cm indicating the unstable behaviour of the flow in the upstream section of the channel.
However, the downstream section of the channel shows no wavy pattern at the interface. The
expansion has stabilized the flow downstream of the expansion.

4.4. Tapered (30°) 2:1 expansion-Newtonian fluids

Figure 1(c) shows a schematic of the tapered expansion. The flow domain includes: an
upstream parallel plate section of 10 cm in length (with 50 finite elements in this direction) and
a gap of 2 cm, a tapered (30°) 2:1 expansion section of 1.732 cm (18 finite elements lengthwise)
and a downstream parallel plate section of 10 cm in length (with 50 finite elements lengthwise).
The number of finite elements in the cross flow direction is eight for all three sections.

For the case of Qr=0.125, b=10, v=0.5 Hz, a=1.2 and j=0.55, results are qualitatively
similar to those obtained for the abrupt expansion case, i.e. the flow is stabilized after the
tapered expansion. The flow would have been unstable if the upstream parallel plate geometry
had been the entire flow domain.

Figure 7. Interfacial stability diagram for two truncated power law fluids (Reference [21]).
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Table III. Rheological parameters for the Carreau model

Fluid 1 (lower) Fluid 2 (upper)Model parameters

1.48044 1.68175l
a 2 2

0.336n 0.746

Table IV. Flow parameters of generalized Newtonian simulations (geometry of
Figure 3)

Stable Carreau flow Unstable Carreau flowParameters

1 0.0125U1 (m s−1)
0.20.1U2 (m s−1)

m1 (Pa s) 7338.1 14 676.2
m2 (Pa s) 862.7 862.7

20 00010 000h01 (Pa s)
h02 (Pa s) 1000 1000

33.728.62b
6.42 0.81j

Table V. Carreau fluid simulations (geometry of Figure 3)

Parameter Stable Carreau flow Unstable Carreau flow

h (0BhB1) 0.38490.8652
6.614 0.2717Vint f (cm s−1)
4 0.4v (rad s−1)

a 1.04 1.13

4.5. Abrupt 4:1 contraction-Newtonian fluids

Figure 1(d) shows a schematic of the abrupt contraction. Simulations have been carried out
here for different Newtonian flow systems with a fixed viscosity ratio b=10 and volumetric
flow ratio (Q1/Q2) of 1/8, 1/6, 1/5 and 8/1. All simulations include a perturbation frequency of
0.5 Hz. There are 150 elements in the channel length direction, with 100 elements in the section
before the abrupt contraction (at a distance of 10 cm from the meeting point of the two fluids),
and eight and four elements in the channel gap direction in the upstream and downstream
sections of the channel, respectively. The depth ratio is j=6.14 (the same in both sections of
the channel) and the viscosity ratio, b=10, which characterizes the flow as stable in both
parallel plate sections of the die, according to the linear stability diagram of Figure 4. Figure
10(c) shows the vertical transient movement of four interfacial points (at 5, 10, 12, and 15 cm
from the meeting point of the two fluids). The flow is stable in both sections of the contraction.

For the case where the flow is predicted to be unstable in the downstream parallel plate
section for Q1/Q2=1/8, no possible transient solution was possible. Break-up of the interface
occurred during the first time step of the transient simulation in the contraction. For the case
of Q1/Q2=1/6, 42 complete time steps could be run before the break-up of the interface, at the
abrupt contraction. This behaviour may indicate that the interface touches one of the walls so
that there is no solution for which two continuous phases co-exist for the perturbation
imposed. By lowering the flow rate ratio to 1/5, a complete run including five perturbation
cycles could be achieved, showing a stable interface after the contraction.
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4.6. Tapered (30°) 4:1 contraction-Newtonian fluids

Figure 1(e) shows a schematic of the tapered contraction. All simulations have been carried
out with a perturbation frequency of 0.5 Hz. The tapered (30°) 4:1 contraction domain
includes a parallel plate section upstream of the tapered contraction, of 10 cm in length and
2 cm in depth, a tapered contraction of 1.3 cm in length, and a downstream parallel plate
section of 10 cm in length and 0.5 cm in depth. The finite element mesh contains 120 elements
in the channel length direction, with 50 elements upstream of the abrupt expansion, 20
elements in the tapered contraction section, and 50 elements downstream of the contraction.
The channel gap direction has eight elements.

For the case of Q1/Q2=8, the results show stable behaviour of the interface in both parallel
plate sections of the die. For the case of Q1/Q2=1/8, 22 complete time steps can be run before
the interface touches the lower wall of the tapered contraction at 10.765 cm from the meeting
point of the two fluids. At Q1/Q2=1/6, 29 complete time steps can be run, again the interface
touches the wall at 10.765 cm from the meeting point of the two fluids. With Q1/Q2=1/5, 38
complete time steps can be simulated with the interfacial break-up observed at 10.88 cm from
the fluids meeting point (tapered contraction zone). The limiting volumetric flow rate ratio

Figure 8. (a). Transient interface position. Stable Carreau model flow. v=4 Hz, Dt=0.07854 s, a=1.04. (b)
Transient vertical movement of selected points. Stable Carreau model flow.
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Figure 9. (a) Transient interface position. Unstable Carreau model flow. v=4 Hz, Dt=0.7854 s, a=1.13. (b)
Transient vertical movement of selected points. Unstable Carreau model flow.

value before interfacial break-up has been found to be 1/4. LSA predicts unstable flow regimes
for all the studied volumetric flow rate ratios (Q1/Q2).

4.7. Comparison against experimental work

Simulations presented in this section correspond to the case of a parallel plate die used in the
experimental work of Wilson and Khomami [7]. Figure 11 shows a schematic of the geometry
which has a length of 18.542 cm and a depth of 0.254 cm. The dimensions were estimated from
the available information included in the literature [7]. A qualitative comparison is made here
between our simulations and the experimental results in terms of the stability of the interface.

Wilson and Khomami generated and observed interfacial instabilities in two-layer coextru-
sion flows by introducing temporally regular disturbances with a controllable amplitude and
frequency in fluid 1. The authors developed a mechanism that forces the extruder screw
forward by a predetermined amount, once each screw revolution, resulting in a pressure pulse
disturbance (P=A sin vt) with the amplitude (A) determined by the amount of screw
displacement and the frequency (v) being identical to the screw rotation frequency. In this
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Figure 10. (a) Transient vertical movement of selected points through a 2:1 abrupt expansion. Stable Newtonian flow.
v=0.5 Hz, Dt=0.6283 s. (b) Transient vertical movement of selected points through a 2:1 abrupt expansion.
Unstable Newtonian flow. v=0.5 Hz, Dt=0.6283 s. (c) Transient vertical movement of selected points through a 4:1

abrupt contraction. Stable Newtonian flow. v=0.5 Hz, Dt=0.6283 s.
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Figure 11. Geometrical domain specification of experimental die (Reference [7]).

sense, a range of dimensionless wavenumbers could be introduced, bounded by the minimum
screw speed necessary to maintain the desired layer depth and by the maximum screw speed
(200 rev min−1).

In order to determine the instability or stability of a given flow, the vertical transient
position of selected interfacial points are recorded into a computer and a composite image is
created showing information in a temporal domain as viewed from a fixed position. This
technique provides information that allows the measurement of both amplitude and frequency
of the evolving interfacial wave. Thus, the growth or decay of the interfacial wave (when its
amplitude is viewed at different locations along the die where viewing windows are installed)
is associated with the unstable or stable behaviour of the flow respectively.

The dimensionless wavenumber (a) given by Equation (23) is calculated here using a value
of interface velocity given by the analytical solution of the flow of two polymer melts between
parallel plates using a truncated power law model as the constitutive relationship. A lubrica-
tion approximation solution to the 1D equations of motion is used to calculate the interface
velocity at the desired downstream position.

Two polymer systems were used in their study, a compatible system and an incompatible
system. The compatible system consisted of HDPE and linear low density polyethylene
(LLDPE) and the incompatible system consisted of HDPE and PP. Incompatibility implies no
interaction on the molecular scale, no diffusion of one polymer species in the other and a
non-zero interfacial tension.

The length scale of the interfacial waviness in the flow direction observed in the experiments
was of the order of 1 cm.

The results of simulations carried out with the incompatible system (HDPE/PP) are
presented. HDPE corresponds to the lower layer (fluid 1) and PP the upper layer (fluid 2).
Table VI shows the fit power law coefficients, m and n, for the given range of shear rates [7]
(data for 204°C) of the HDPE and PP. Table VII contains the corresponding Carreau model
rheological parameters used in the simulations. The finite element mesh has 130 elements,

Table VI. Rheological parameters for the power law model [7]

nm (Pa s)g Range (s−1)TypePolymer

5.08×103Exxon PD4252 0.71PP 0.15g55
0.15g55Quantum LS556 1.17×103 0.94HDPE
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Table VII. Rheological parameters for the Carreau model

nlm0 (Pa s) aPolymer

11.1576 0.693PP 10 828.76 1.8
20.9396.413581314.6HDPE

lengthwise, in the die section and six elements in its gap, and the amplitude of the perturbation
imposed on fluid 1 is 5% of its steady state average velocity.

The first system is defined in the experimental work by a dimensionless wave number (a) of
1 and a dimensionless interface position (d1/d) of 0.2. In order to obtain the given values of a

and d1/d, the flow rate ratio (Q1/Q2) was set to 0.18 with a mean velocity of 0.018 cm s−1 for

Figure 12. (a,b) Transient interface position. Stable parallel plate flow (HDPE/PP). v=3.175 Hz, Dt=0.099 s, a=1.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1159–1181 (1998)
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fluid 1 (HDPE) and 0.1 cm s−1 for fluid 2 (PP). The resulting interface velocity is 0.644 cm
s−1 (calculated from a steady state solution), and the perturbation frequency is 3.17 Hz.

The complete transient simulation accounts for 200 time steps (Dt=0.099 s). Figure 12
shows the interfacial shape monitored every 20 time steps. The transient phenomenon
that takes place starts with the appearance of an interfacial waviness in the entrance of
the die (Figure 12(a)). The amplitude of the interfacial wave decreases in the flow direction
with the flow showing a stable behaviour. Figure 12(b) shows how the transient infor-
mation travels through the die with an interfacial wave advancing towards the exit of
the channel. Another key aspect observed is the shape of the interfacial wave (Figure
12(a)). The sea-wave shape type of wave is qualitatively similar to that observed experi-
mentally. However, this asymmetry of the wave shape is observed only in the primary
stages of the transient phenomenon, Figure 12(b) shows how the interfacial wave shape
trends towards symmetry. The system is considered to be stable, both in simulation
and experiment because the amplitude of the interface perturbation decays in the flow
direction.

The second system is experimentally defined by values of a=1 and d1/d=0.67, and is
reported as unstable. The values for Q1/Q2, interface velocity, and perturbation frequency
are 3.75, 0.826 cm s−1 and 10 Hz, respectively. Figure 13(a) and (b) show the transient
interface behaviour for 300 time steps (Dt=0.0314 s) of the simulation. The flow is experi-
mentally unstable, but the numerical solution shows a stable flow, i.e. the amplitude of the
interfacial wave decreases in the flow direction with the transient moving along the die
giving rise to a second wave. This result emphasizes the need to include a viscoelastic
model in the formulation to capture the stability behaviour of polymer melts.

5. CONCLUSIONS

The solution of the transient flow of bi-component flow systems of Newtonian and Carreau
model fluids in complex geometries has been presented. By introducing a periodic perturba-
tion in the system the transient evolution of the interface between the two fluids has been
studied. Results obtained for the different parallel plate channels are in agreement with
interfacial stability predictions of LSA, for both the Newtonian and the generalized Newto-
nian case.

Simulations of the flow in complex geometries have given new insights into the effect of
flow domain geometry on the stability of a given flow system. In the case of Newtonian
fluids, the inclusion of an expansion or a contraction in the channel can change the
stability of the flow system. The presence of the expansion or the contraction stabilizes the
flow when the flow is unstable in the section of the channel upstream of the abrupt change
of geometry. For a contraction, the flow rate ratio is very important for a given contrac-
tion ratio because there are Q1/Q2 values for which no solution of continuous phases exists.

A resulting sea-wave type of wave for the case of the coextrusion flow of HDPE and PP
(modeled with the Carreau equation) through a narrow gap die, indicates the combined
effect of geometry and rheological parameters on the nature of the interfacial wave. How-
ever, numerical results show discrepancy with experimental findings on the coextrusion of
polymer melts. The simulation of the unstable HDPE/PP flow studied shows a stable flow.
This discrepancy reveals the need for a more realistic constitutive equation (viscoelastic
model) to study stability phenomena in polymer melt coextrusion.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1159–1181 (1998)



FLOW OF BI-COMPONENT FLUID SYSTEMS 1179

Figure 13. (a,b) Transient interface position. Unstable parallel plate flow (HDPE/PP). v=10 Hz, Dt=0.0314 s, a=1.
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